\(\int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [1081]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 43, antiderivative size = 296 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 \left (15 a^3 B+27 a b^2 B+9 a^2 b (5 A+3 C)+b^3 (9 A+7 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 \left (21 a^2 b B+5 b^3 B+7 a^3 (3 A+C)+3 a b^2 (7 A+5 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 \left (54 a^2 b B+15 b^3 B+8 a^3 C+9 a b^2 (7 A+5 C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{63 d}+\frac {2 b \left (63 A b^2+99 a b B+24 a^2 C+49 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{315 d}+\frac {2 (3 b B+2 a C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d}+\frac {2 C \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d} \]

[Out]

2/15*(15*B*a^3+27*B*a*b^2+9*a^2*b*(5*A+3*C)+b^3*(9*A+7*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ell
ipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*(21*B*a^2*b+5*B*b^3+7*a^3*(3*A+C)+3*a*b^2*(7*A+5*C))*(cos(1/2*d*x+1/
2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/315*b*(63*A*b^2+99*B*a*b+24*C*a^2+4
9*C*b^2)*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/63*(54*B*a^2*b+15*B*b^3+8*a^3*C+9*a*b^2*(7*A+5*C))*sin(d*x+c)*cos(d*x
+c)^(1/2)/d+2/21*(3*B*b+2*C*a)*(a+b*cos(d*x+c))^2*sin(d*x+c)*cos(d*x+c)^(1/2)/d+2/9*C*(a+b*cos(d*x+c))^3*sin(d
*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {3128, 3112, 3102, 2827, 2720, 2719} \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 b \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (24 a^2 C+99 a b B+63 A b^2+49 b^2 C\right )}{315 d}+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (7 a^3 (3 A+C)+21 a^2 b B+3 a b^2 (7 A+5 C)+5 b^3 B\right )}{21 d}+\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (15 a^3 B+9 a^2 b (5 A+3 C)+27 a b^2 B+b^3 (9 A+7 C)\right )}{15 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)} \left (8 a^3 C+54 a^2 b B+9 a b^2 (7 A+5 C)+15 b^3 B\right )}{63 d}+\frac {2 (2 a C+3 b B) \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}{21 d}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3}{9 d} \]

[In]

Int[((a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

(2*(15*a^3*B + 27*a*b^2*B + 9*a^2*b*(5*A + 3*C) + b^3*(9*A + 7*C))*EllipticE[(c + d*x)/2, 2])/(15*d) + (2*(21*
a^2*b*B + 5*b^3*B + 7*a^3*(3*A + C) + 3*a*b^2*(7*A + 5*C))*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*(54*a^2*b*B
+ 15*b^3*B + 8*a^3*C + 9*a*b^2*(7*A + 5*C))*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(63*d) + (2*b*(63*A*b^2 + 99*a*b*
B + 24*a^2*C + 49*b^2*C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(315*d) + (2*(3*b*B + 2*a*C)*Sqrt[Cos[c + d*x]]*(a +
 b*Cos[c + d*x])^2*Sin[c + d*x])/(21*d) + (2*C*Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^3*Sin[c + d*x])/(9*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3112

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a +
 b*Sin[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Dist[1/(b*(m + 3)), Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*
c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&
  !LtQ[m, -1]

Rule 3128

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e
+ f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*
x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n +
2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rubi steps \begin{align*} \text {integral}& = \frac {2 C \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d}+\frac {2}{9} \int \frac {(a+b \cos (c+d x))^2 \left (\frac {1}{2} a (9 A+C)+\frac {1}{2} (9 A b+9 a B+7 b C) \cos (c+d x)+\frac {3}{2} (3 b B+2 a C) \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 (3 b B+2 a C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d}+\frac {2 C \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d}+\frac {4}{63} \int \frac {(a+b \cos (c+d x)) \left (\frac {1}{4} a (63 a A+9 b B+13 a C)+\frac {1}{4} \left (126 a A b+63 a^2 B+45 b^2 B+86 a b C\right ) \cos (c+d x)+\frac {1}{4} \left (63 A b^2+99 a b B+24 a^2 C+49 b^2 C\right ) \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 b \left (63 A b^2+99 a b B+24 a^2 C+49 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{315 d}+\frac {2 (3 b B+2 a C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d}+\frac {2 C \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d}+\frac {8}{315} \int \frac {\frac {5}{8} a^2 (63 a A+9 b B+13 a C)+\frac {21}{8} \left (15 a^3 B+27 a b^2 B+9 a^2 b (5 A+3 C)+b^3 (9 A+7 C)\right ) \cos (c+d x)+\frac {15}{8} \left (54 a^2 b B+15 b^3 B+8 a^3 C+9 a b^2 (7 A+5 C)\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 \left (54 a^2 b B+15 b^3 B+8 a^3 C+9 a b^2 (7 A+5 C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{63 d}+\frac {2 b \left (63 A b^2+99 a b B+24 a^2 C+49 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{315 d}+\frac {2 (3 b B+2 a C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d}+\frac {2 C \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d}+\frac {16}{945} \int \frac {\frac {45}{16} \left (21 a^2 b B+5 b^3 B+7 a^3 (3 A+C)+3 a b^2 (7 A+5 C)\right )+\frac {63}{16} \left (15 a^3 B+27 a b^2 B+9 a^2 b (5 A+3 C)+b^3 (9 A+7 C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 \left (54 a^2 b B+15 b^3 B+8 a^3 C+9 a b^2 (7 A+5 C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{63 d}+\frac {2 b \left (63 A b^2+99 a b B+24 a^2 C+49 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{315 d}+\frac {2 (3 b B+2 a C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d}+\frac {2 C \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d}+\frac {1}{21} \left (21 a^2 b B+5 b^3 B+7 a^3 (3 A+C)+3 a b^2 (7 A+5 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{15} \left (15 a^3 B+27 a b^2 B+9 a^2 b (5 A+3 C)+b^3 (9 A+7 C)\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 \left (15 a^3 B+27 a b^2 B+9 a^2 b (5 A+3 C)+b^3 (9 A+7 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 \left (21 a^2 b B+5 b^3 B+7 a^3 (3 A+C)+3 a b^2 (7 A+5 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 \left (54 a^2 b B+15 b^3 B+8 a^3 C+9 a b^2 (7 A+5 C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{63 d}+\frac {2 b \left (63 A b^2+99 a b B+24 a^2 C+49 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{315 d}+\frac {2 (3 b B+2 a C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d}+\frac {2 C \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.53 (sec) , antiderivative size = 230, normalized size of antiderivative = 0.78 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {84 \left (15 a^3 B+27 a b^2 B+9 a^2 b (5 A+3 C)+b^3 (9 A+7 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+60 \left (21 a^2 b B+5 b^3 B+7 a^3 (3 A+C)+3 a b^2 (7 A+5 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} \left (7 b \left (36 A b^2+108 a b B+108 a^2 C+43 b^2 C\right ) \cos (c+d x)+5 \left (252 a^2 b B+78 b^3 B+84 a^3 C+18 a b^2 (14 A+13 C)+18 b^2 (b B+3 a C) \cos (2 (c+d x))+7 b^3 C \cos (3 (c+d x))\right )\right ) \sin (c+d x)}{630 d} \]

[In]

Integrate[((a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

(84*(15*a^3*B + 27*a*b^2*B + 9*a^2*b*(5*A + 3*C) + b^3*(9*A + 7*C))*EllipticE[(c + d*x)/2, 2] + 60*(21*a^2*b*B
 + 5*b^3*B + 7*a^3*(3*A + C) + 3*a*b^2*(7*A + 5*C))*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*(7*b*(36*A*
b^2 + 108*a*b*B + 108*a^2*C + 43*b^2*C)*Cos[c + d*x] + 5*(252*a^2*b*B + 78*b^3*B + 84*a^3*C + 18*a*b^2*(14*A +
 13*C) + 18*b^2*(b*B + 3*a*C)*Cos[2*(c + d*x)] + 7*b^3*C*Cos[3*(c + d*x)]))*Sin[c + d*x])/(630*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(974\) vs. \(2(328)=656\).

Time = 10.56 (sec) , antiderivative size = 975, normalized size of antiderivative = 3.29

method result size
default \(\text {Expression too large to display}\) \(975\)
parts \(\text {Expression too large to display}\) \(1013\)

[In]

int((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/315*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-1120*C*b^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/
2*c)^10+(720*B*b^3+2160*C*a*b^2+2240*C*b^3)*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c)+(-504*A*b^3-1512*B*a*b^2-1
080*B*b^3-1512*C*a^2*b-3240*C*a*b^2-2072*C*b^3)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(1260*A*a*b^2+504*A*b^
3+1260*B*a^2*b+1512*B*a*b^2+840*B*b^3+420*C*a^3+1512*C*a^2*b+2520*C*a*b^2+952*C*b^3)*sin(1/2*d*x+1/2*c)^4*cos(
1/2*d*x+1/2*c)+(-630*A*a*b^2-126*A*b^3-630*B*a^2*b-378*B*a*b^2-240*B*b^3-210*C*a^3-378*C*a^2*b-720*C*a*b^2-168
*C*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+315*A*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2
-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+315*a*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-945*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-189*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2
-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3+315*B*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+75*B*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-315*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^
2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3-567*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^
2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2+105*a^3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1
/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+225*C*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x
+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-567*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-147*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1
/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/
2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 376, normalized size of antiderivative = 1.27 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 \, {\left (35 \, C b^{3} \cos \left (d x + c\right )^{3} + 105 \, C a^{3} + 315 \, B a^{2} b + 45 \, {\left (7 \, A + 5 \, C\right )} a b^{2} + 75 \, B b^{3} + 45 \, {\left (3 \, C a b^{2} + B b^{3}\right )} \cos \left (d x + c\right )^{2} + 7 \, {\left (27 \, C a^{2} b + 27 \, B a b^{2} + {\left (9 \, A + 7 \, C\right )} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 15 \, \sqrt {2} {\left (7 i \, {\left (3 \, A + C\right )} a^{3} + 21 i \, B a^{2} b + 3 i \, {\left (7 \, A + 5 \, C\right )} a b^{2} + 5 i \, B b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 15 \, \sqrt {2} {\left (-7 i \, {\left (3 \, A + C\right )} a^{3} - 21 i \, B a^{2} b - 3 i \, {\left (7 \, A + 5 \, C\right )} a b^{2} - 5 i \, B b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 \, \sqrt {2} {\left (-15 i \, B a^{3} - 9 i \, {\left (5 \, A + 3 \, C\right )} a^{2} b - 27 i \, B a b^{2} - i \, {\left (9 \, A + 7 \, C\right )} b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 \, \sqrt {2} {\left (15 i \, B a^{3} + 9 i \, {\left (5 \, A + 3 \, C\right )} a^{2} b + 27 i \, B a b^{2} + i \, {\left (9 \, A + 7 \, C\right )} b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{315 \, d} \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/315*(2*(35*C*b^3*cos(d*x + c)^3 + 105*C*a^3 + 315*B*a^2*b + 45*(7*A + 5*C)*a*b^2 + 75*B*b^3 + 45*(3*C*a*b^2
+ B*b^3)*cos(d*x + c)^2 + 7*(27*C*a^2*b + 27*B*a*b^2 + (9*A + 7*C)*b^3)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d
*x + c) - 15*sqrt(2)*(7*I*(3*A + C)*a^3 + 21*I*B*a^2*b + 3*I*(7*A + 5*C)*a*b^2 + 5*I*B*b^3)*weierstrassPInvers
e(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 15*sqrt(2)*(-7*I*(3*A + C)*a^3 - 21*I*B*a^2*b - 3*I*(7*A + 5*C)*a*b^
2 - 5*I*B*b^3)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*sqrt(2)*(-15*I*B*a^3 - 9*I*(5*A
+ 3*C)*a^2*b - 27*I*B*a*b^2 - I*(9*A + 7*C)*b^3)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c
) + I*sin(d*x + c))) - 21*sqrt(2)*(15*I*B*a^3 + 9*I*(5*A + 3*C)*a^2*b + 27*I*B*a*b^2 + I*(9*A + 7*C)*b^3)*weie
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**3*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

Mupad [B] (verification not implemented)

Time = 3.97 (sec) , antiderivative size = 452, normalized size of antiderivative = 1.53 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {2\,\left (B\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+B\,a^2\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+B\,a^2\,b\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{d}+\frac {C\,a^3\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,A\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,A\,a^2\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {3\,A\,a\,b^2\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}-\frac {2\,A\,b^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,b^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,b^3\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {6\,B\,a\,b^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {6\,C\,a^2\,b\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a\,b^2\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((a + b*cos(c + d*x))^3*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^(1/2),x)

[Out]

(2*(B*a^3*ellipticE(c/2 + (d*x)/2, 2) + B*a^2*b*ellipticF(c/2 + (d*x)/2, 2) + B*a^2*b*cos(c + d*x)^(1/2)*sin(c
 + d*x)))/d + (C*a^3*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d + (2*A*a^3
*ellipticF(c/2 + (d*x)/2, 2))/d + (6*A*a^2*b*ellipticE(c/2 + (d*x)/2, 2))/d + (3*A*a*b^2*((2*cos(c + d*x)^(1/2
)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d - (2*A*b^3*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom
([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*B*b^3*cos(c + d*x)^(9/2)*sin(c + d*x)*hy
pergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2)) - (2*C*b^3*cos(c + d*x)^(11/2)*sin(c +
 d*x)*hypergeom([1/2, 11/4], 15/4, cos(c + d*x)^2))/(11*d*(sin(c + d*x)^2)^(1/2)) - (6*B*a*b^2*cos(c + d*x)^(7
/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (6*C*a^2*b*cos(c
+ d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*C*a*b
^2*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(3*d*(sin(c + d*x)^2)^(1/2))